Confounding and confounders.

نویسنده

  • R McNamee
چکیده

Confounding should always be addressed in studies concerned with causality. When present, it results in a biased estimate of the effect of exposure on disease. The bias can be negative—resulting in underestimation of the exposure effect—or positive, and can even reverse the apparent direction of effect. It is a concern no matter what the design of the study or what statistic is used to measure the effect of exposure. The potential for confounding can be reduced by good study design, but in non-randomised studies this is unlikely to resolve the problem fully. Hence statistical adjustment methods, to reduce the bias caused by measured confounders, are also frequently considered. Such adjustment presupposes that one knows which factors are confounders. However, recent literature on methods for identifying confounders suggest that these are not always obvious. Indeed, in pursuit of guidelines, authors have had to reexamine the meanings of confounding and confounders with some ambiguity and conflict emerging. This literature is reviewed and a recent modification to the traditional definition of a confounder, which emphasises causal rather than statistical relationships, is described and illustrated. Some well known problems in occupational epidemiology, arising from health related selection, are considered in the light of recent ideas. Control of confounding through study design is not addressed, nor is the article concerned with details of statistical methods for adjustment. An overview of design and analysis in relation to confounding by age may be useful additional reading. It is assumed that the reader has at least a basic knowledge of epidemiological methods. Unless otherwise stated, definitions and comments apply to all causal study designs including case–control studies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The impact of residual and unmeasured confounding in epidemiologic studies: a simulation study.

Measurement error in explanatory variables and unmeasured confounders can cause considerable problems in epidemiologic studies. It is well recognized that under certain conditions, nondifferential measurement error in the exposure variable produces bias towards the null. Measurement error in confounders will lead to residual confounding, but this is not a straightforward issue, and it is not cl...

متن کامل

Reducing Bias Amplification in the Presence of Unmeasured Confounding Through Out-of-Sample Estimation Strategies for the Disease Risk Score.

The prognostic score, or disease risk score (DRS), is a summary score that is used to control for confounding in non-experimental studies. While the DRS has been shown to effectively control for measured confounders, unmeasured confounding continues to be a fundamental obstacle in non-experimental research. Both theory and simulations have shown that in the presence of unmeasured confounding, c...

متن کامل

Confounding variables in epidemiologic studies: basics and beyond.

This article discusses the importance, definition, and types of confounders in epidemiology. Methods to identify and address confounding are discussed, as well as their strengths and limitations. The article also describes the difference among confounders, mediators, and effect modifiers.

متن کامل

Confounding, Homogeneity and Collapsibility for Causal Effects in Epidemiologic Studies

Detection of confounding and confounders is important for observational studies, and especially so for epidemiologic studies. Miettinen and Cook (1981) derived two criteria for detecting confounders. Using a model, Wickramaratne and Holford (1987) proved that the two criteria are necessary but not sufficient conditions for confounders. We take uniform nonconfounding to mean there is no confound...

متن کامل

Detection of and Adjustment for Multiple Unmeasured Confounding Variables in Logistic Regression by Bayesian Structural Equation Modeling

Aim: To compare the bias magnitude between logistic regression and Bayesian structural equation modeling (SEM) in a small sample with strong unmeasured confounding from two correlated latent variables. Study Design: Statistical analysis of artificial data. Methodology: Artificial binary data with above characteristics were generated and analyzed by logistic regression and Bayesian SEM over a pl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Occupational and environmental medicine

دوره 60 3  شماره 

صفحات  -

تاریخ انتشار 2003